Derivation of the Breaking an Elbow with an Arbitrary Angle at an Arbitrary Angle

 Michael Fletcher

A bend of radius R and of bend angle θ is to be split at angle ϕ for analysis.
Length from center of bend to end of bend. (Note: L to be substituted in 45° bends to match ASME B16.9 as needed.)

$$
L=R \cdot \tan \left(\frac{\theta}{2}\right)
$$

Sum of the horizontal components:

$$
L_{12} \cos (\theta)+L_{23} \cos (\varphi)+L_{34} \cos (\varphi)+L_{45} \cos (\varphi)=L+L \cos (\theta)
$$

Sum of vertical components:

$$
L_{12} \sin (\theta)+L_{23} \sin (\varphi)+L_{34} \sin (\varphi)=L \sin (\theta)
$$

With the caveat:

$$
L_{12}=L_{23}=L_{1}, L_{34}=L_{45}=L_{2}
$$

Simplifying:

$$
\begin{gathered}
L_{1}(\cos (\theta)+\cos (\varphi))+L_{2}(\cos (\theta)+\cos (\varphi))=L(1+\cos (\theta)) \\
L_{1}(\sin (\theta)+\sin (\varphi))+L_{2} \sin (\varphi)=L \sin (\theta) \\
L_{1}=\frac{L(1+\cos (\theta))-L_{2}(\cos (\theta)+\cos (\varphi))}{\cos (\theta)+\cos (\varphi)}
\end{gathered}
$$

Substituting:

$$
\begin{gathered}
\left(\frac{L(1+\cos (\theta))-L_{2}(\cos (\theta)+\cos (\varphi))}{\cos (\theta)+\cos (\varphi)}\right)(\sin (\theta)+\sin (\varphi))+L_{2} \sin (\varphi)=L \sin (\theta) \\
\left(L(1+\cos (\theta))-L_{2}(\cos (\theta)+\cos (\varphi))\right) \frac{\sin (\theta)+\sin (\varphi)}{\cos (\theta)+\cos (\varphi)}+L_{2} \sin (\varphi)=L \sin (\theta) \\
L(1+\cos (\theta)) \frac{\sin (\theta)+\sin (\varphi)}{\cos (\theta)+\cos (\varphi)}-L_{2}(\cos (\theta)+\cos (\varphi)) \frac{\sin (\theta)+\sin (\varphi)}{\cos (\theta)+\cos (\varphi)}+L_{2} \sin (\varphi)=L \sin (\theta) \\
L_{2} \sin (\varphi)-L_{2}(\cos (\theta)+\cos (\varphi)) \frac{\sin (\theta)+\sin (\varphi)}{\cos (\theta)+\cos (\varphi)}=L \sin (\theta)-L(1+\cos (\theta)) \frac{\sin (\theta)+\sin (\varphi)}{\cos (\theta)+\cos (\varphi)} \\
L_{2}\left(\sin (\varphi)-(\cos (\theta)+\cos (\varphi)) \frac{\sin (\theta)+\sin (\varphi)}{\cos (\theta)+\cos (\varphi)}\right)=L \sin (\theta)-L(1+\cos (\theta)) \frac{\sin (\theta)+\sin (\varphi)}{\cos (\theta)+\cos (\varphi)} \\
L_{2}(-\sin (\theta))=L \sin (\theta)-L(1+\cos (\theta)) \frac{\sin (\theta)+\sin (\varphi)}{\cos (\theta)+\cos (\varphi)} \\
L_{2}=L\left(\frac{(1+\cos (\theta))}{\sin (\theta)} \frac{\sin (\theta)+\sin (\varphi)}{\cos (\theta)+\cos (\varphi)}-1\right)
\end{gathered}
$$

Notes:

- Bends shall be specified at points 2 and 4 only. The radius of both bends is R .
- L12 and L45 must be at least this long. They may be longer, but any excess of this value will be straight piping.
- An error message may appear as you apply a bend at these locations if you specify minimum lengths, and CAESAR automatically attempts to place a node at this location when you apply the bend modifier.
- The mathematics above assumes that L 45 is oriented along a primary axis. It may be necessary to temporarily re-orient the entire model or sections of the model in order to work the math out.
- Only one break is considered, but the logic can be extended to multiple breaks. For example, instead of a 30° bend broken at 10° and 20°, you can think of it as two 15° bends broken at 10° and 5°. The second 15° bend must, however, be rotated 15° relative to the first 15° bend to act as a continuous 30° bend.

